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Abstract

This paper describes a method to approximate point sets by Loop subdivision surfaces based on geometric al-
gorithms. We assume that the data points are given in triangular mesh of arbitrary topological type. The initial
control mesh of the Loop subdivision surface is obtained by simplifying the input triangular mesh using QEM
algorithm. Our algorithm iteratively updates the control mesh in a global manner based on a simple point-surface
distance computation followed by translations of the control vertices along the displacement vectors. The main
advantages of our approach compared to existing surface fitting methods are simplicity, speed, and generality.
Computational results show that our algorithm runs at least six times faster than current state-of-the-art subdivi-
sion fitting methods. We demonstrate our technique with a variety of complex examples.

Categories and Subject Descript¢ascording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object ModelingCurve, surface, solid, and object representations

1. Introduction of shape-preserving fitting techniques with B-spline surfaces
- . are given in[HL33[PTO1[HISAWARV(OD.
Fitting surfaces to B cloud points generated by laser 9 - ‘ S <

range scanning systems is one of the most important prob-  However, it is extremely difficult for tensor product sur-
lems in CAD, geometric modeling and computer graphics faces to handle surfaces with arbitrary topology, and to
[EI33[CWQ™07. We distinguish two types of fitting: in-  maintain continuity conditions near the extraordinary points
terpolation and approximatiof L3 [PT913. In interpola- where the number of edges that meet at this point is not equal
tion we generate an interpolating surface that passes throughto four. A new class of surfaces called subdivision surfaces,
the data points. In approximation we generate an approxi- which offers an alternative to the tensor product B-spline,
mating surface that passes near the data points which min-has become very popular in movie production and game en-
imizes the deviation of the surface from the data points. gines[DKT33).

Consequently the number of control vertices and the num-
ber of data points is the same for interpolation, while the
number of control vertices is in general much less than the
number of data points for approximation. The most popular
representation for fitting such data in geometric modeling
is the tensor product B-spline surfaces. There is a tremen-
dous amount of literature on fitting B-spline curves/surfaces
to a set of data points, however it is not the scope of the o simplicity: Our algorithm iteratively updates the input
present paper to review all the existing work. Good surveys  mesh in a global manner based on a simple point-surface
distance computation followed by translations of control
vertices along the displacement vectors.

In this paper we use the Loop subdivision surfdceds 4
to approximate the data points given in triangular mesh of
arbitrary topological type, although the proposed algorithm
can be easily extended to Catmull-Clark subdivision surfaces
as well as Doo-Sabin subdivision surfaces. Our algorithm
has the following features:

T e-mail:d06gb150@ynu.ac.jp e Speed:Our algorithm runs at least six times faster than
1 e-mail:d07gb167@ynu.ac.jp current state-of-the-art subdivision fitting methods.
§ e-mail:maekawa@ynu.ac.jp e Scalability: Our algorithm quickly gets a coarse fit, while
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2 Y. Nishiyama, M. Morioka & T.Maekawa / Subdivision Surface Approximation

we can progressively obtain a finer fit by performing more by a Loop subdivision surface is iteratively deformed to-
iterations. wards the model shape by changing the control vertices of
e Generality: Since our algorithm is based on simple geo- the initial shape. In each iteration a linear system is solved
metric procedures, it can be easily extended to curves and for the unknown displacement vectors. Since SDM is based
surfaces defined by control vertices. on local optimization, its approximation results can be sen-
sitive to the initial surface, and requires more research on the

initial selection of the control vertices.
2. Related work ) )
The algorithm developed byZLC0d consists of a two-

Research on flttlng subdivision surfaces to point clouds has phase subdivision process, a t0p0|ogica| modification of the
been conducted extensivefHKD93 [HDD™04 [STKKI3 control mesh and a subsequent modified Catmull-Clark sub-
[MMNO7] [CWQ™07. A division to construct a smooth surface that interpolates some
method for generating fair Catmull-Clark surfaces is pro- or all of the vertices of a mesh with arbitrary topology. The
posed by [HKD93. First, a set of given mesh vertices is  computational complexity of their algorithm @(n) where
interpolated and then the surface is faired by minimizing n is the number of the vertices, however the paper does not
a quadratic norm that combines thin plate and membrane address the problem of global optimal fairness, and the re-

energies. The method solves a linear system using sparsesulting shape may exhibit some unwanted undulations.
LU decomposition. A least squares fitting algorithm to a

scattered data in terms of Loop subdivision surface is stud- _ Our algorithm, which does not require the solution of
ied by [HDD 94 [MKO5]. The parametrization is computed linear system, employ_s an iterative method mt_roduced by
by projecting each vertex point onto a piecewise linear ap- for interpolating a set of ordered points by B-
proximation of the subdivision surface [HDD"94], while spline curves/surfgces, afidINO7] forilnterpolatmg.atn-

the parametrization is evaluated on the true subdivision sur- @ngular or a quadrilateral mesh of arbitrary topological type.

face [MKQ3] using the exact evaluation proceduigig9§. The method byl[[WD03] first establishes a one-to-one re-
These methods[HDD™94 [MKOE] also rely on nonlinear  |ationship between the given data points and the knots, and
minimization methods. computes the displacement vectors between the given points

A fast Loop subdivision surface fitting method which in- and their corregponding points on the B-spline curve/s.urface
teractively defines an initial mesh, and refines it through 2t knots, and displace the corresponding control vertices by
an iterative local approximation method, is presented by the d'lsplacement vectors iteratively until the magnitude of
[STRKYY. The method is useful when one needs to quickly the difference vectprs become zero. They prove the conver-
generate a surface that captures the overall shape of thegence of the algorithm based on the eigenvalue analysis of
scanned geometry, however the method may not be suitablethe matrix which relates the displacement vectors okttie
for generating a surface that precisely interpolates the data Step and thé+1-th step.

pojnts, since only a subset of the dense mesh is used in the  |terative geometric algorithm developed HMIINO7]
fitting process. constructs a smooth surface that interpolates a triangular

An algorithm for fitting Catmaull-Clark subdivision sur- ~ ©F & quadrilateral mesh of arbitrary topological type. They
faces to a given shape through a fast local adaptation proce-Start their algorithm by assuming that the given triangu-
dure based on quasi-interpolation is introducedEg0. lar/quadrilateral mesh is a control net of a Loop/Catmull-
The method employs an adaptive approximation algorithm Clark subdivision surface. The control vertices are iteratively
that approaches the target surface gradually by generating aUPdated globally by a closest point computation and an dis-
sequence of surfaces. Since quasi-interpolation does not re-Placing procedure without solving a linear system. If the
quire the solution of a linear system, it is simpler than the COnvergence is slow in some vertices, one can terminate the
commonly used interpolation and least squares methods putdlobal iterations and conduct local iterations for the vertices
may result in larger errors in high curvature regions as indi- With slow convergence to save the computational time.

cated by[MKO5]. In this paper we present a novel approximation method
A squared distance minimization (SDM), which is intro- thatis based on the iterative geometric algoritBi[NO7].
duced by[PL03, is applied by[EWQ 07 for fitting a Loop
subdivision surface to unorganized points. An initial sur-
face is iteratively deformed towards the target surface by
minimizing an objective function defined by local quadratic ~As an input we are given a triangular medtrepresented by
approximants of the squared distance function to the tar- atuple(K, P) whereK is a simplicial complex specifying the
get surface. They express the second order Taylor approx- topological type of the mesh, andP{p;,p,,...,p,} € R®
imant of the squared distance function in the principal frame is a set of vertex positions. Unlike interpolation, we usu-
at the normal footpoint. The method is aative contour ally do not know in advance how many control vertices are
method[KWT8g] in the sense that an initial shape defined needed to keep the deviation errors within the prescribed

3. Overview of the algorithm
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Figure 1: lllustration of main steps of our geometric algorithm. (a) Input mesh overlaid on the shaded image. (b) QEM-

simplified mesh and its corresponding limit Loop subdivision surface. (c) Computation of error vectors (green) and displacement

vectors magnified by the scale of 2(red). (d) Final approximated Loop subdivision surface with its control vertices.

tolerance. Accordingly the approximation algorithm usually
starts with an initial mesh, which has a much lower num-

ber of triangulations than the input mesh, and increases the

number of control vertices iteratively until it satisfies the
prescribed tolerance. We first simplify the given input trian-
gular mestM=M(® using QEM [GHI, which maintains
high fidelity to the original model. We denote the QEM-
simplified mesh adMo=M"). The number of vertices of

box diagonal of the input mesh are within the tolerarsges
andeave, respectively.

4. Displacements of control vertices

We assume that the QEM-simplified melfy, is the ini-
tial control mesh of the Loop subdivision surface. We be-
gin the geometric algorithm by computing the closest point

Mg depends on the accuracy required and model complex- op, Sti<k>) for each data point I(b> by applying Newton’s

ity. We use about 5% of the number of vertices &f for

Mg which generally leads to very good results, as suggested

by [MKT5).

For each vertex jpc M, we compute the closest point

on the approximating surface S using Stam's exact evalu- jinear system for the correctiiv, Aw)':

ation procedureJiad3. Following the parameter
value of the closest point of; M on S is denoted by
ti =< fj,(vi,w;) > where fj € Mg indicates the patch to
which g is mapped, andl —v; —w;, v;,w;) are the barycen-
tric coordinates.

We iteratively improve the approximation by relocating
the positions of the control vertices, inserting control ver-

method. At each Newton iteration step we linearize the Loop

subdivision surface at the solutign w)i(]‘j) MKO5], where
subscriptj represents th¢-th Newton iteration, and we or-
thogonally project ponto the tangent plane, yielding a2

ij-
(P— (S(t) + Su(t)Av -+ Sw(t)Aw) - Sy(t) | =0
(P— (S(t) + Sy(t)AV+ Sw(t)Aw) - Sw(t) | f,'?= 0.

The initial values for Newton'’s iteration can be generated by

orthogonally projecting i%) onto the triangle whose vertices
are obtained by computing the limit points of the vertices of

tices in regions where the deviations are large. Whenever the the current mesM(k). Let us denote a 1-ring neighbors of

control vertices are inserted, we apply connectivity regular-
ization followed by edge-flips to remove elongated triangles.
We indicatek-th iteration by attaching a superscrij).

We define two errors:

1. Average erroEave

n gtk
Eave: Zl—l || p| . (I ) ||2 (1)
2. Maximum errorEmax:
_ iR
Emax= max I pi —SE™) |2 2

with M) as an initial control of the approximating Loop
subdivision surface, a sequence of solutiwﬁ@, M(3), ...IS

pi(k) by v1,...,vn where we drop subscripfand superscript

.(k) for the sake of simplicity. Then the limit position oﬁ)
is given by

k) oo K Vi+...V
() = Bup? + (1- ) 2
where
oaN = §+}C0527T[ 2+§ B —L
N=l8"a"N 8’ N~ 11— 8ay

As the iteration proceeds, given data points become closer
to the approximating Loop subdivision surface, and the pa-
rameter values of the closest points will not change from
iteration to iteration. Therefore, in such cases we may termi-

generated anm® gradually converges to a solution whose nate the computation of finding the closest points to save the
maximum error and average error divided by the bounding computational time. However, in the final step we compute
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Figure 2: Approximation by geometric algorithm. (a) QEM-
simplified control mesh (blue) and its corresponding limit
surface evaluated by Stam’s algorithm. The green lines rep-
resent the lines connecting the given data points P and their
corresponding closest points on the limit surface. The red
lines with arrows show the displacement vectors. (b) The re-

lation between the weighted error vec@fﬁ> and the error

vector ¢Y.

(k)

of the weightsy; 5, yielding:
a(k)
2383
g =220 (4)
PRI

Finally the control vertices for thie+ 1-th iteration will be-
come

k+1 K K
oY =p +d. ©)
We repeat the above stef® ¢ @ until Eq.[[) and EqD)
divided by the bounding box diagonal of the input mesh be-
come smaller than the prescribed toleranggasx and €ave

for all the input data points.

The proof of convergence for the non-uniform cubic
B-spline curve interpolation and non-uniform bi-cubic B-
spline surface interpolation is studied IYD03]. In their
interpolation scheme the displacement vector is computed
by taking the difference between the given data points and its
corresponding points at knots on the B-spline curve/surface.
It is also shown experimentally bYVIMNO7] that when
displacement vector is evaluated between the given data

the closest points for all the data points to guarantee that the point and the corresponding closest point on an interpolat-

errors are within the prescribed tolerance.

After the first iteration, we can start Newton’s method

from the patch and the parameter value assigned in the

previous iteration. Implementation issues for the Newton’s
method are fully discussed iMKOS MMNOT].

Once the closest point is computed, the error vector can be

expressed a#'%: p,(k> — S(ti(k)). In interpolation, we simply

displace the control vertices by the error vectors

(k+1)

pY =pl ¢,

ing Loop/Catmull-Clark surface, eventually the surface in-
terpolates given data points. While a complete analysis of
the convergence of the approximation scheme is beyond the
scope of this paper, the intuition behind the approximation
algorithm is not difficult to understand.

5. Topological adjustments

When the error norm does not become small enough in some
regions, we insert new control vertices by applying 1-to-4
split with crack-fixing 1-to-2 splifAK0%] as shown in Fig-
ureld(a). We call this one face split@asic case splitn a ba-

and hence we have one-to-one correspondence between thgc case, the central shaded triangle is split into four triangles

data points and the control vertices of the interpolating Loop
subdivision surfacelNIMNOZ], whereas in approximation

at the mid points of the edges (red points). To maintain the
mesh compatibility, 1-to-2 split is conducted on each neigh-

we do not have such one-to-one correspondence. Thereforeboring face. The central white triangle of Fig@é) shares

it is not trivial how to distribute the error vectofké to the
most appropriate control points of the approximating Loop
subdivision surface.

Let us assume that there areclosest points of P on(§
which lie on the patches of the one-ring neighbori(tlf}.p:or

each closest point of P we compute the error veq(@(see
FigurelXa)), where the subscrigtdenotes the index for the

closest points, and weigh it according to the barycentric co-
(k)

ordinates; j = 1.0— vi(}f]) - wi(S) as follows:
- k) (K
el(,J):u(j )q{J), J=1....,m. 3)

Note thatui(}f]):l at(pi(k> ), andui(}j)=0 along the edge oppo-
site to ﬁk) as illustrated in Figurl (b). The amount of dis-
placement of the control verticeé‘.kblis obtained by adding

all the weighted error vectoéz) and dividing by the sum

two of its edges with 1-to-4 split triangles (shaded). We call
this two face split a " special case split". In special cases
1-to-4 split is conducted instead of 1-to-2 split to maintain
the valid mesh connectivity. Since the vertices affected by
the adaptive insertion (black and red points) have a one-to-
one correspondence with the vertices that have been subdi-
vided once, we assign the corresponding subdivided vertices
to the black and red vertices to minimize the modification of

S(t) [MKO5).

Since these edge split operations induce extraordinary
vertices, we need to improve the mesh quality by regular-
izing its connectivity. This can be done by minimizing the
following function [EGO3MKOT):

R(M) = VZwmv) —dopt(v))?
S

whered(v) is the valence of vertex v ardhpt(V) is its op-
timal degree. The optimal value for boundary vertices is
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Figure 3: Face-split operation of control vertices for (a) a
basic case split, (b) a special case split.

Q%

higher R(M) lower R(M)
(a)

minimal angle

VY

Figure 4: Topological adjustments: (a) Edge-fllp operations
are conducted if the regularity measuréNR) decreases. (b)
Edge-flip operations will also be conducted to maximize any
minimal angles.

dopt(V) = 4, and for the rest of the vertices itdgpt(Vv) = 6.

As illustrated in Figur&l(a), we evaluate the value B{M)

for before and after the edge flip and choose the one that has
lowerR(M). Another problem that often arises is the appear-

ance of elongated edges. The elongated edges often cause

unwanted undulations, thus we need to remove them. We
apply edge-flips if the minimal angle between all the angles
of the triangles adjacent to the edge is increased as shown in

Figure@ (b).

The overall algorithm for topological adjustments can be
summarized as follows:

1. Insertion of control vertices once in five iterations of the

main approximation loop to the regions where error norm

does not become small enough.

. Connectivity regularization by edge flipping.

. Angle improving edge-flips.

. Necessity to re-compute the initial values of Newton’s
iteration for the data points whose closest points lie on

the patch that are affected by the topological adjustments.

w N

6. Experimental results

We have implemented the above algorithm on a Pentium IV
3.0GHz PC with 2GB RAM. The effectiveness of our ap-
proximation algorithm can also be seen from the companion
video clips captured using our approximation algorithm.

FigureRillustrates a plot of the average as well as max-
imum deviations of the approximation with respect to the

submitted tdPoster Proceedings of Pacific Graphics (2008
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Figure 5: The plot shows the convergence of our algorithm
applied to armadillo model.

number of iterations of the main approximation loop for the
armadillo model. The figure also shows the time spent for
each iteration. Both error measures are scaled by a bounding
box diagonal of the model. The average efage=0.01%

and the maximum erroEmax=0.05% are reached after 16
iterations, and 30 iterations, respectively. The spikes in the
graph which appear in every five iterations are due to the
time for the topological adjustments of the control vertices.

The models that we use for experiments are a Stanford
bunny, Igea, a buddha, and an armadillo which are shown
in Figuredll @ [ B Here we note that the number of ver-
tices used in Figuris much less than the one used in the
numerical experiments. We also note that the Igea, Buddha,
and armadillo models in Figurd® [ B are all computed
with €avg = 0.01% andemax = 0.05%, which are different
from the ones in Tab@

Figureld shows the shaded image of the input mesh, input
mesh overlaid on the shade image, QEM-simplified mesh
and its corresponding limit surface, final mesh overlaid on
the final surface , and the final surface of the Igea model.
Figurellshows the shaded image of the input mesh, the final
surface, and their close-up views of the buddha model. Fig-
urel@ shows the front and rear views of the armadillo model

of the shaded image of the input mesh as well as the final
mesh.

We compare our results with those of the approxima-
tion method developed bjMKO5], as well as[EWQ 07
and tabulate them in Tab[@ We include times for read-
ing input files, QEM mesh simplification and initializing dy-
namic parameters as a pre-computation. First we compare
with [[MKOS]. The PC on which they ran the experiments
is a 2.8 GHz Pentium IV with 2 GB RAM. We start the
computation with the same number of initial control ver-
tices as in[MK05], and set the same termination tolerances
€rms andemax. Here we note thalJKOD)] use the root mean
square errorsrms instead ofeave. Although there are some
differences in the resulting number of vertices of the final
mesh, our method is at least six times faster than the meth-
ods of [MKQ5].
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Model [ Originaln | Initial n | Finaln | Emax(%) | Erms(%) | Precomputation Total time
Our Results

Bunny 37K 612 7098 0.049 0.0108 4sec 22sec

Igea 134K 336 1572 0.238 0.0701 14sec 1min:8sec

Armadillo 173K 433 3267 0.248 0.0618 19sec 1min:49sec

Buddha 543K 4091 26838 0.049 0.0101 1min 7min:6sec
Results in[MKO5]

Armadillo 173K 433 2820 0.248 0.0598 N/A 12min:26sec

Buddha 543K 4093 17995 0.049 N/A N/A 64min

Bunny 37K 612 8440 0.048 N/A N/A 5min

Igea 134K 336 1553 0.247 0.0575 N/A 8min:29
Results in[EWO™ 07

Buddha 543K 4662 18715 0.43* 0.03* 83min:58sec | 114min:6sec

Bunny 35K 919 996 0.82* 0.09* 6min:1sec 7min:18sec

Igea 134K 526 2385 0.36* 0.05* 4min:11sec 6min:43sec

Table 1: Comparisons with other methods. (* The errors are based on uniformly scaled data when the longest side of the
bounding box has the length equal to 1.0.)

@ (b) (d)
Figure 6: Igea: (a) Shaded image of the input mesh (134K vertices). (b)Input mesh overlaid on the shade image. (c) QEM-
simplified mesh (1343 vertices) and its corresponding limit surface. (d) Final mesh overlaid on the final surface (12445 vertices).
(e) Final surface.

) (@ 0

Figure 7: Buddha:(a) Shaded image of the input mesh (543K vertices). (b) Final Loop subdivision surface (26838 vertices). (c)
and (d) are the close-up views of the shaded image of the input mesh. (e) and (f) are the close-up views of approximated surface.
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(b) (d)

Figure 8: Armadillo: (a) and (b) are the shaded images of the input mesh (173K vertices). (c) and (d) are the final Loop
subdivision surfaces (26110 vertices).

. Pre-computation Iterative geometric algorithm
Model lteration QEM | Initialize | Newton’s Method| Remesh| Other
Bunny 21 7.72% | 8.14% 62.29% 8.08% | 13.77%
Igea 32 3.86% | 9.37% 68.18% 7.22% | 11.37%
Armadillo 27 4.00% | 6.79% 75.19% 6.71% | 7.31%
Buddha 32 3.68% | 5.26% 48.53% 36.14% | 6.39%

Table 2: Calculation time for each function.

The method of[TWQ™07 consist of two main phases, 7. Conclusion and Future Work

pre-computation and minimization. Chen et al. ran the ex-

periments on a PC with an Intel Xeon 2.8 GHz and a 2 GB We have developed an efficient algorithm for constructing
RAM. The models are scaled into a rectangular box with the Loop subdivision surfaces that approximates the vertices of
longest side equal to 1.0. For setting up the squared distancea triangular mesh. The method is based on geometric algo-
error functions, they pre-compute the distance field, as well rithms, which iteratively update the control vertices without
as the tangential and curvature information of the target sur- solving a linear system. Comparing with conventional fit-
face. As indicated in Tab[ the time for pre-computationis  ting methods, which rely on solving linear systems, our al-
much longer than the minimization time. Although there are gorithm is faster, easier to implement, and more general. Al-
some differences in the termination tolerances, if we com- though our algorithm does not employ explicit fairing tools
pare the total time, our method is also at least six times faster in the formulation, the resulting surfaces are visually pleas-

than and, even if we compare only the minimiza- ~ ing.

tion part, our method is still much faster. ] ) ]
As atopic of future research, we plan to further investigate

the remeshing scheme, and explore other applications of the

) o ] geometric algorithms in geometric modeling and computer
Finally we list in Tabldl a detailed breakdown of the graphics.

ratios of the computational time took for constructing the

models in Figurdll @ [@ B which are all computed with

€ave = 0.01% andemax = 0.05%. The second column lists

the number of iterations, the third column indicates the ra-

tio of computational time for reading the input data and the Acknowledgements

QEM simplification. The fourth column is the time ratio for

initializing the dynamic parameters, and the fifth column is A portion of this work was supported by the Japan Soci-
the percentage of time took in the Newton iterations. The ety for the Promotion of Science, Grants-in-Aid for Scien-
sixth column represents the time ratio for remeshing, and the tific Research under the grant number 16560116. We wish
seventh column shows time ratio for the rest of the compu- to thank Daisuke Hirano for his help. The Igea and the Ar-
tation including updating the control points. We observe that madillo models are courtesy of Cyberware. The bunny and
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