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Abstract In many engineering applications, a smooth surface is often approximated by a mesh of
polygons. In a number of downstream applications, it is frequently necessary to estimate the differential
invariant properties of the underlying smooth surfaces of the mesh. Such applications include first-order
surface interrogation methods that entail the use of isophotes, reflection lines, and highlight lines, and
second-order surface interrogation methods such as the computation of geodesics, geodesic offsets, lines
of curvature, and detection of umbilics. However, we are not able to directly apply these tools that were
developed for B-spline surfaces to tessellated surfaces. This article describes a unifying technique that
enables us to use the shape interrogation tools developed for B-spline surface on objects represented
by triangular meshes. First, the region of interest of a given triangular mesh is transformed into a
graph function (z=h(x,y)) so that we can treat the triangular domain within the rectangular domain.
Each triangular mesh is then converted into a cubic graph triangular Bézier patch so that the positions
as well as the derivatives of the surface can be evaluated for any given point (x,y) in the domain. A
number of illustrative examples are given that show the effectiveness of our algorithm.
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1 Introduction

In reverse engineering, densely scanned point clouds are usually tessellated into a triangular mesh.
Constant density surfaces generated from medical images, which are produced via computed tomogra-
phy (CT) or magnetic resonance (MR), are represented by triangular meshes [14]. Models in animation
and games are often represented by a mesh of polygons that portray a high degree of visual quality. The
differential invariant properties of the underlying smooth surfaces of mesh models are often required
in downstream applications. Such applications include shape interrogation, shape matching, rendering,
feature detection, and additive manufacturing. Although in the last three decades, many tools have
been developed for B-spline surfaces to deal with these applications, we are not able to directly apply
these tools to tessellated surfaces due to the following two reasons. The first reason is that triangular
meshes are flat and possess only C° continuity; thus, classical differential geometry cannot be applied.
Furthermore, the coordinates of a point of a B-spline surface patch are expressed as functions of the
parameters u and v in a closed rectangle, while those of a triangular mesh are expressed in a triangular
domain.

On the other hand, since these tools developed for B-spline surfaces cannot be applied to mesh
models, many techniques for the estimation of the geometric properties of a triangular mesh based



on discrete differential geometry have been developed. There is no consensus, however, on how to
achieve accurate estimations of simple surface attributes such as normal vectors and curvatures [20].
Thus, the making of robust estimates of normal vectors and curvature tensor still remains an area
of active research [9]. Most existing techniques estimate the surface attributes at the vertices of the
input polygon, an approach that may not be appropriate for our purposes, since the computation of
geodesics and lines of curvature requires the estimation of such attributes inside the triangular domain.
One can, of course, linearly interpolate the normal vectors and curvatures of a flat triangle, but because
the real geometry is not linear, the results may not be accurate. Furthermore, the derivatives of the
first fundamental form coefficients, which are used in the geodesic computation, cannot be obtained
from curvatures and normals. It is also known that the estimation of surface normals and curvatures
from the polygonal approximation of the surface by least squares fitting does not guarantee accurate
approximation [9].

In addition to these developments in discrete differential geometry [20], many surface interrogation
tools that are specially designed for a triangular mesh have been developed in the last decade. Yong
et al. [32] used highlight lines to remove local irregularities in a triangular mesh. This was done by
first calculating the highlight distance value for each mesh vertex, and then using linear interpolation
to obtain the highlight distance value for the interior points. The computation of a discrete geodesic
path between two points on triangular meshes and the computation of a discrete point-source geodesic
distance field have been studied by many researchers [21,5,31]. These algorithms are quite different
from those being studied for B-splines, since a path goes through alternating sequences of vertices and
edges, and only straight line distances are considered, without using differential geometry. Alliez et al.
[1] used lines of minimum and maximum curvatures in remeshing in order to determine the appropriate
edges for a quad-dominant mesh that reflects the symmetries of the input shape. They used curvature
tensor fields to detect umbilics. However, due to the linear interpolation within each triangle, there can
be only one umbilic point per triangle. Kalogerakis et al. [10] extracted lines of curvature from point
clouds, a method that is applicable to surfaces of arbitrary genus and is robust to noise and outliers.

In this paper we present a unifying technique that enables us to use the surface interrogation tools
developed for B-spline surfaces [3,18,9] for triangular mesh models, including first-order surface in-
terrogation methods such as reflection lines and highlight lines [24,17,22], and second-order surface
interrogation methods such as the computation of geodesics [15], geodesic offsets [23], lines of curvature
[19], and the detection of umbilics. In general, second-order surface interrogation tools for triangular
meshes are more difficult than those of first-order interrogation tools due to the higher order of differ-
entiation involved. In order to evaluate high order differentiation accurately, the input mesh must be
in high-quality. The last decade has witnessed the introduction of several remeshing algorithms that
convert low-quality meshes into highly regular meshes in terms of their size, connectivity, vertex sam-
pling, and maximized angles [27]. Furthermore, remeshing software is readily available on the Internet,
e.g., [2]. Accordingly, we assume that the input mesh has been modified by remeshing software so that
it becomes a high-quality mesh.

The newly proposed method allows us to compute various surface interrogation tools on a triangular
mesh model as though the surface were a B-spline surface without any change in the original algorithm.
Our main contributions can be summarized as follows:

— It presents a unifying technique for reusing the shape interrogation tools developed for B-spline, such
as circular reflection lines, computation of lines of curvature, geodesics, and detection of umbilics,
for a triangular mesh without any change in the original algorithm.

— It introduces a novel approach to parameterize a piece-wise linear triangular mesh as a set of graph
triangular Bézier patches. This parameterization facilitates a more accurate approximation of the
surface differential properties than other alternatives.

— Most importantly, it combines these techniques into an effective procedure for automatically and
accurately computing shape interrogation tools for triangular meshes.

In our unifying technique, we first transform the region of interest of a given triangular mesh
into a graph function (z=h(x.y)) so that we can treat the triangular domain within the rectangular
domain. At the same time, we convert the triangular mesh into a smooth surface using cubic graph
Bézier triangles so that we are able to compute the differentiations. It is not our intent to compare the
performance of our methods with that of the methods that were developed especially for triangular
meshes.



The remainder of the paper is structured as follows. In Section 2, we briefly review the differential
geometry of surfaces. In Section 3, we introduce a novel method to extract the differential invariants
properties of the underlying smooth surfaces of the mesh. In Section 4, the method introduced in Section
3 is applied to the computation of circular reflection lines, which is a first-order surface interrogation
tool, and in Sections 5 and 6, the second-order surface interrogation tools, including the computation
of lines of curvature, the detection of umbilic points, geodesics, and geodesic offsets, are applied, in the
given order. Finally, Section 7 concludes the paper.

2 Brief review of differential geometry and notations

In this section, we first offer a brief review of the differential geometry of surfaces [26,7,24]. A point
(z,y, z) of a parametric surface is expressed as functions of the parameters u and v in a closed rectangle:

r(u,v) = (z(u,v),y(u,v),z(w,v)), 0<u<l 0<v<l1. (1)
A unit surface normal vector of the parametric surface is defined by

Iy X T,

N= (2)
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where subscripts u and v denote partial differentiation with respect to u and v, respectively. The first
fundamental form coefficients E, F', and G and the second fundamental form coefficients L, M, and
N of a surface are given by

E:I‘U'I‘u, F:ru'rm G:rv'rva (3)
L=ry, N, M=ry,,--N, N=r, N. (4)

A normal curvature at point P is given by
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where A = Z—Z is the direction of the line tangent to the curve passing through P. The extreme values
of kK, can be obtained by evaluating d;; =0 in (5), which gives:

(E+2FX+GX)(NX+ M) — (L +2MX+NX)(G\+F) =0, (6)
and hence,

L+2MXN+NX M+ N
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Furthermore, since
E+2F\+GX = (E+ F\) + MF +G)\) ,
L+2MA+ NX = (L + MX) + XM + NN, (8)
(6) can be reduced to
(E+F)N)(M+NX) =(L+ MNEF+GN), (9)
and hence,
 L4+2MX+ NN M+ NX L+ M) (10)
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Therefore, the extreme values of k,, satisfy the two simultaneous equations
(L—kpE)du+ (M — £, F)dv =0,

(M — kpF)du + (N — k,G)dv =0 . (11)



These equations form a homogeneous linear system of equations for du and dv, which will have a
nontrivial solution if and only if

L—knE M—k,F

det|\ v P N — k.G

=0, (12)

where det| | denotes the determinant of a matrix, or by expansion
(EG — F*)K2 — (EN + GL — 2FM)k,, + (LN — M?) = 0. (13)

If we express Gaussian and mean curvatures using the the first and second fundamental form coeffi-
cients,

LN — M?
-~ BEG-F%’ (14
_ EN+GL-2FM (15)
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then the quadratic equation for x,, (13) is simplified to:
kg —2Hk, + K =0. (16)

Solving the quadratic equation yields

wi=H+VH2—K, rwo=H—-VH?—K, (17)

where k1 is the maximum principal curvature and ko is the minimum principal curvature. The direc-
tions in the tangent plane for which k,, takes maximum and minimum values are called the principal
directions.

3 Triangular domain to rectangular domain

In order to use the shape interrogation tools developed for tensor product B-spline surfaces for trian-
gular meshes, two obstacles must be overcome.

1. A B-spline surface (patch) is a tensor product surface defined on a rectangular domain, while a
triangular mesh is defined on a triangular domain.

2. A B-spline surface of order k is (k-p-1) times differentiable at a knot with multiplicity p, and thus,
it has C*~P~1 continuity, while a triangular mesh is piecewise flat and has only C° continuity.

The first obstacle can be overcome by transforming the coordinate system of the region of interest of a
given triangular mesh into a graph function (z=h(x,y)) or into a parametric form (x,y,h(x,y)) so that
the triangular domain can be treated within the rectangular domain. This coordinate transformation
technique is introduced in Section 3.1. The second obstacle can be overcome by replacing the flat
triangles with graph triangular Bézier patches, an approach that is presented in Sections 3.2 and 3.3.
We employ the half-edge data structure for the handling of the triangular mesh.

3.1 Coordinate transformation

It is a well known fact that locally, any surface is the graph of a differential function [7]. Accordingly,
we represent the surface in a graph form in the region of interest. Consider a global frame O-XYZ and
a vertex of a triangular mesh R = [X,Y, Z]T7 as illustrated in Figure 1. To represent the triangular
mesh in a graph form, an orthogonal Cartesian reference frame o-xyz is attached to a vertex point,
which can be any vertex in the region of interest. We represent the vertex point R in the frame o-xyz
asr = (2,9,2)7. We choose unit vectors a, N x a, and N as the directions of the x, y, and z axes,
respectively, as shown in Figure 1, where N = (Nx, Ny, N Z)T is an average of the unit normal vectors
in the region of interest, and a = (ax,ay,az)” is an arbitrary unit vector that is orthogonal to N.
The unit normal vector at a vertex of a triangular mesh can be evaluated using Equation (29).



If we concatenate these three unit vectors a, N xa, and N in a single matrix, we obtain a description
of the orientation of the graph form with respect to the frame o-zyz, which is called a rotation matriz

Q:

ay Nzax — Nxaz

ax NYaZ _]YZGY
Q - (
ayz Nxay—Nan

Then, the relationship between R and r is:

R=R,+Qr.

Nx
Ny) . (18)
Nz 7/ (o)

(19)

Using (19), we can solve for r as a function of R, which is the coordinate of point P expressed in frame
o-xyz as a function of the coordinate of point P expressed in the O-XY Z frame, as

r=Q YR-R,),

(20)

where Q7! is the inverse matrix of €. Since € is an orthonormal matrix, Q! can be replaced by the

transpose matrix Q7'; therefore

r= ( z ) :QT[R—
h(z,y)

or equivalently:

z=a-[R-Ry,],

y=(Nxa)-[R-R,,

z=h(z,y) =N-[R-R,].

R.], (21)
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Fig. 1 Coordinate transformation.

3.2 Curved PN triangles

A point p can be represented by barycentric coordinates (u,v,w) with respect to a triangle with

vertices Py, Ps, and Pj3 as:

p(u,’l}, w) = UPl + UPQ + ’U)P3 )

(25)



where u + v +w = 1 [8]. If we denote the orthogonal projection of AP;PyP3 onto the xy-plane as
APPyP3, then the area of AP{P3yP3 is obtained by
o P“” P” PI
area (P1, Py, P3) = fdet PY P! PY|, (26)
1 1 1

where superscripts x and y denote the x and y components of the vectors P, Py, and P3, respectively.
Given a point p in AP{PyPj3, if we denote its orthogonal pI‘OJeCthD onto the xy-plane by p, the
barycentric coordinates (u,v,w) with respect to the triangle AP, P,P; are evaluated as:

area (f), 132, 153) area (f’l, P, f’g) area (151,P2-, 15)

YT e (PrPoPs) "7 area (PrPo.Ps) Y e (Pr.Po.Ps)

(27)

Note that barycentric coordinates (u, v, w) of point p with respect to the triangle AP PsP3 have the
same values as those evaluated by Equation (27).

Vlachos et al. [29] introduced so-called curved point-normal triangles (PN triangles), which replace
conventional flat triangles with a small number of flat sub-triangles that are computed based on the
geometry of triangular cubic Bézier patches, in order to improve the visual quality for vertex shading
operations. The triangular cubic Bézier patch b(u) is defined as follows [8]:

u) = ZbiBiB mek EF 'k'uvj w”
[i|=3 li|=3
= bagot® + bozov® + boozw® + ba193u?v + biag3uv? + bagi 3u’w (28)
+ b0213v2w + b1023uw2 + b0123vw2 + b1116uvw,

where u = (u,v,w), u,v,w >0, u+v+w=1, |i| =i+ j+ k, and b; are the control points.

b003

b0 (b)
(a)

Fig. 2 Curved PN triangle Bézier patch: (a) Control net of the PN triangle. (b) Input data for the PN triangle,
points P;, and normals N; (¢ = 1,2, 3).

The ten control points of a cubic Bézier patch, which are shown in Figure 2(a), are determined
based on the point and normal information at the vertices of the flat triangle (see Figure 2(b)). The
unit normal vector N; at the vertex P; is estimated by taking the average of the unit normal vector
N; of the surrounding polygons that meet at the vertex P; weighted by the facet angles «; at the
vertex [28]:

> i1 ;N
| D251 ;N

Vlachos et al. [29] group the control points b;j; into three groups as:

N; = (29)
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. vertex coefficients: b3007 bogo, boog.
. tangent coefficients: b2107 blgo, bogl, bolg, bl()g, b201.
3. center coefficient: byyy.

[\}

The vertex coefficients are placed so that they match the corner positions:
bsoo = P1, bozo = P2, bgos =P3 . (30)

The tangent coefficients of the curved PN triangles are obtained by first distributing the b, uniformly
over the flat triangle, and then projecting the two tangent coefficients on the flat triangle that are closest
to each corner onto the tangent plane defined by the normal at the corner, as follows:

baio = (2P1 + Py —w1aN1)/3, bigo = (2P2 + P; — w91 N»)/3,
booi = (2P2 + P3 — we3N2)/3,  boia = (2P3 + Py — w32N3)/3, (31)
bio2 = (2P3 + Py — w31N3)/3,  bgo = (2P; + Pz —wi13Ny)/3,

where w;; = (P; — P;) - N;. Finally, the center coefficient is defined as follows:

E = (b21o + b120 + bo21 + bo12 + bio2 + b2o1)/6,
V =(P;+Py+P3)/3,
by =E + (E— V)/2. (32)

3.3 Graph PN triangular patch

After the coordinate transformation, the region of interest of the input triangular mesh is represented
in the nonparametric surface form of z=h(x,y), which can be converted into a parametric form (x, y,
h(x,y)). Accordingly, the curved PN triangles introduced in Section 3.2 cannot be directly used for our
purposes. In this section, we introduce a graph of a curved PN triangular patch whose control points
are determined so that the resulting Bézier patch is a graph function (see Figure 3(b)).

(a)

Fig. 3 Graph triangular Bézier patch: (a) Construction of a tangent coefficient ba1o. (b) Graph cubic Bézier
patch. The original triangular mesh is depicted in orange.

Using the linear precision property of the Bernstein polynomials [8], the variable u can be written
as:

u= L), (33)
li|=n

and analogous formulas can be written for the variables v and w. The height function z can be expressed
in the Bernstein form:

z= Y hB(u), (34)

li|l=n



where h; are the height coefficients. Thus, a graph of function z is given by a triangular Bézier surface:

bw == %Z B (u). (35)
z lij=n hi

Equation (35) can be expressed in terms of the vertices of the domain triangle AP;PoP3 as follows:

ik
bw = Y [p (22 5) 1 h B, (36)
\ﬂzzn n'n'n
where p(%, z %) are the base points on AP;P,P3 as defined by Equation (25), and k = (0,0,1)7 is
a unit vector along the local z-axis. The vertex height coefficients hsoo, hoso, hoos are equal to zero,
while the tangent height coefficients hoig, h120, ho21, Ro12, P02, hoo1 are obtained by computing the
line-plane intersections. For each corner, we have lines that emanate from the two closest base points
along k, and intersect them with the tangent plane defined by the normal at the corner, as shown in
Figure 3(a). This process is different from that used for the original curved PN triangles. The tangent
height coefficient ho1q, for example, is computed by intersecting the line

2P, +P
Loio = % + ha10k (37)
with the tangent plane
(L21o—P1) Ny =0, (38)
which yields
(P —P;y)-N;
_ 39
hazo 3k-N; (39)
Accordingly, we obtain
. 2P, + Py (P1 — P2) - N1
boig = 3 3N, (40)
Similarly, we obtain
. 2P, + Ps (Pl — Pg) - Ny . 2Ps; + Py (Pg — Pl) - N3
bao1 = 3 3k N, k, big = 3 + 3k N; k,
. 2P5 + Py (Pg*PQ) - N3 . 2Py + Ps (P2 *Pg) - Ny
bo12 = 3 + 3k N; k, boa = 3 3k N, k,
. 2Py + Py (PQ—Pl)'NQ
b1y = 3 3k N, (41)

In order to apply the shape interrogation tools to the triangular Bézier patches, we must first
identify in which triangle the point lies. If we suppose that an orthogonally projected point p lies
inside AP1PyP3, then p can be expressed as

p=Pi +aV; + 8V, (42)

where V; and V5 denote the vectors from 131 to 152 and 131 to 1537 and « and § are constants. Solving
for a and 3 yields
o det\f)V2| — d6t|VOV2| _d6t|f)V1| — d€t|V()V1|

- . 43
det|V1 V| P det| V1 Vs (43)

The point p then lies inside AP1PoPs if .8 > 0and a + 8 < 1 [30]. Second, differentiations with
respect to x and y of the local coordinates are necessary. The derivatives for tensor product patches



are evaluated by partial derivatives, while the directional derivatives are used for triangular patches
as follows:

Dgb(u) = dby,(u) + eb,(u) + fby(u), (44)

where subscript d=(d, e, f) denotes the derivative direction. It is defined by d=us — u;, where u; and
up are two points in the triangular domain, and is characterized by d + e + f=0 [8]. Note that the
tangent vector depends on the length of d. The second order derivative is also computed:
ail; 2’ _9%b d

g e | |

Oudw Ovow Ow?

D3b(u) = [de f] (45)

The derivative direction in x is obtained by taking the partial derivative of u,v,w in Equation (27)
with respect to x:
ou 1 . - v 1, - . ow 1 - .
d=— == (P} - P} = =_(P{-PY = —— =—(PY-P} 46
Oz S( 2 3), € O S( 3 1), f o S( 1 5); (46)
where S = area(f’l, P, f’g). Similarly, the derivative direction in y is obtained as follows:

ou 1 - . ov 1, - ow 1 - R
=—==P3;-P3 =—=—(P{-P3 =— =—(P%-PY). 47

ay S( 3 3 € ay S( 1 3. f y S( 2 1) (47)

Note that the normal vectors of the resulting graph Bézier patch at the vertices coincide with the
given normal vectors N7, N9, and N3:

D(_1,1,00b(1,0,0) x D(_1,0,1yb(1,0,0) _(ba1o — bsoo) x (baor = bsoo) _ N (48)
|D(~1,1,00b(1,0,0) x D(_1,0,1yb(1,0,0)|  [(b21o — b3oo) X (b201 — b3oo)] a
D0,-1)P(0,1,0) x D1, —1,0b(0,1,0) - (boz1 — boso) x (bi20 — boso) _ (49)
|D(0,-1,1yb(0,1,0) x D(1,_1,0yb(0,1,0)|  [(bo21 — bozo) x (b120 — bozo)| .
D1,0,-1)b(0,0,1) x D(o1,—1)b(0,0,1) _ (b1o2 — boos) % (bo12 — boos) N (50)
|D1,0,-1yb(0,0,1) x D(g,1,-1)b(0,0,1)|  [(b1o2 — booz) X (bo12 — boos)| .

Furthermore, two adjacent patches share the same cubic Bézier curve, and hence, it is water-tight.

4 Circular reflection lines

Reflection lines [12] simulate the mirror images of a family of radiating parallel straight lines on a
smooth surface as viewed from a fixed point. In this method, deviations of the surface from a smooth
shape can be detected by irregularities of the reflection lines. These surface deviations are corrected by
modifying the original surface so that the new surface has reflection lines without any irregularities.
Maeckawa et al. [17,22] extended the concept of reflection lines to circular reflection lines by replacing
a family of parallel light lines with concentric light circles so that the surface fairness can be captured
in all directions.
A parametric representation of the circular light source is given by

L(0) = A + R(cosfn + sin Ob) , (51)

where A and R are the center point and the radius of the circular light source, respectively. The unit
vectors n and b that lie in the plane that contains the circular light are orthogonal. They form a frame
(or trihedron) together with a unit vector t such that t = n x b, and hence, t is perpendicular to the
plane that contains the circular light, as shown in Figure 4(a).

Let us denote the eye position by E, the unit vectors ;:8‘ and IEEZ;:S‘ by e and c as shown in

Figure 4(a), where Q is a point on the reflection line. We then have the following three equations for
c:

c-N(u,v) =cosq, c-e(u,v) = cos2aq, le|=1, (52)
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where N is a unit surface normal at Q, and cosa = e - N(u,v). Let us now define an extension of

vector ¢ at a surface point Q as

F(r)=Q+7c,

where 7 is a parameter. The distance vector d directed from the line F(7) to the circle L(0) is given

by

A + R(cosfn +sinfb) — (Q + 7c) .

d=

Furthermore, the squared distance function D is defined as

D(7,0) =d-d = |[(A + R(cosfn +sindb)) — (Q + 1c)|* .

To compute the minimum distance, we need to evaluate the stationary points of the squared distance

function, which satisfy the following two equations [24]

:DG(TaG) =0,

D, (7,6)

from which 7 and 6 are computed.

A+R(cosOn +sinfb)

Light Source

L(0)

Light Source

4\‘L

V

iyl
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e VAEs
N A |
7

e

Fig. 4 Circular reflection lines: (a) Definition. (b) Signed distance function.

The tangent vector of the circle is given by differentiating Equation (51) with respect to 6, which

yields

L(#) = R(—sinfn + cos6b) .

By definition, we have d-¢ = 0 and d - L, = 0, and hence, (¢ x L)-¢ =0 and (c xL)-L

to the definition of the triple scalar product (see Figure 4(b)). We can thus conclude that the distance
vector d is parallel to ¢ x L. A signed distance function ds can be defined by obtaining the dot product

as follows:

cxL
|exL|

with the unit vector

(A 4+ R(cosbn + sinb) — (Q(z,y) + 7c(z,v))) -

ds(z,y)
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A circular reflection line is defined as a set of points on a surface on which the distance between a
circular light source and an extension of the unit vector ¢ at the circular reflection lines is zero. In other
words, circular reflection lines are points on a surface where the signed distance function vanishes. If
we construct a signed distance surface (z,y, ds(z,y)) by evaluating the discrete values of ds at the grid
points in the zy-plane, we can easily compute the pre-image of the circular reflection lines using the
contour algorithm [4], in which the curves of zero height are computed as surface-plane intersection
problems.

Figure 5 shows the circular reflection lines on a wave-like tessellated surface captured from three
different view points.

(b) (c) (d)
Fig. 5 Circular reflection lines on a wave-like surface (9K triangles): (a) Circular light sources with three

different view points E1, E2, and Es. (b) Tessellated surface lit by circular light sources seen from view point
E;:. (c) Seen from view point Ez. (d) Seen from view point Es.

5 Lines of Curvature

A curve on a surface whose tangent at each point is in a principal direction at that point is called
a line of curvature. A line of curvature indicates a directional flow of the maximum or the minimum
curvature across the surface [19,24]. Since at each point there are two principal directions that are
orthogonal, the lines of curvature form an orthogonal net of lines, except at the umbilics. An umbilic
is a point on a surface where all normal curvatures are equal, and thus the principal directions are
indeterminate. Therefore, the orthogonal net of lines of curvature becomes singular at an umbilic [19].
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(a) (b)
Fig. 6 Computation of lines of curvature and detection of umbilics: (a) B-spline surface. (b) Mesh counterpart
(53K triangles).

Table 1 Numerical results for the computation of lines of curvature and the locations of umbilics in Figure 6.

Location of umbilic points Lines of curvature
B-spline Mesh B-spline Mesh
u v X y Time (s) | Time (s)
0.211 | 0.052 | 0.212 | 0.051
0.211 | 0.984 | 0.212 | 0.980
0.789 | 0.052 | 0.788 | 0.050 3.09 28.85
0.789 | 0.984 | 0.788 | 0.989
0.500 | 0.440 | 0.495 | 0.444

The principal curvature functions « are defined in (17) as k(z,y) = H(z,y) £\/H2(z,y) — K(z,9).
If we assume that

W(z,y) = H*(z,y) — K(z,y) , (59)

then the umbilic occurs precisely at a point where the function W (x,y) is zero. Since & is a real-valued
function, it follows that W(x,y) > 0, and hence an umbilic occurs where the function W(z,y) has a
global minimum [19]. Therefore, the locations of umbilics can be found by first evaluating the discrete
values of W (x,y) at the grid points in the zy plane, and then constructing a graph (z,y, W(z,y)), and
then finding the closed contour [4] with height e using surface-plane intersection problems, where € is
a small positive real number. First, we begin with a larger value of €, which generates closed contours
surrounding the umbilics. If the circumference of the contour is larger than the prescribed tolerance,
€ is lowered to compute the smaller loop; otherwise, the average of the vertices of the closed contour
polygon is computed as the location of an umbilic point.

Every principal curvature direction vector must fulfill (11). Hence, from the first equation in (11),
we obtain

du dv
¥t n(M + kF) , T —n(L+KE), (60)
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(a) (b) (c) (d)

Fig. 7 Sensitivity analysis based on density and quality of tessellated surface. Top row: Mesh structures.
Bottom row: Corresponding lines of curvature and detection of umbilics. (a) Low-quality 9K mesh. (b) High-
quality 9K mesh. (¢) Low-quality 1.7K mesh. (d) High-quality 1.7K mesh.

where the nonzero factor 7 is determined by applying the normalization condition of the first funda-

mental form
du\? du dv dv 2
E (ds) + 2FE£ +G (ds) =1, (61)

which imposes the curvature line as an arc length parametrized curve, which in turn, results in

+1
~ VEM + wF)2—2F(M + F)(L + kE) + G(L + kE)?

n (62)

Since a principal curvature direction vector must also fulfill the second equation of (11) we also
obtain

du dv
i w(N +kG) , T —u(M + KF) . (63)

Likewise, u is determined to be

+1
~ VE(N + #G)2 —2F(N + G)(M 1 #F) + G(M + rF)2

I

(64)

The solutions «' and v’ of the first and the second equations of (11) are linearly dependent, because
the system of linear equations given by (11) has a rank smaller than 2 [19,24]. The details regarding
the manner in which a system of differential equations should be used, and how the signs of n and u
are determined, are fully discussed in [19,24]. We can trace the lines of curvature by integrating the
initial value problem for a system of coupled nonlinear ordinary differential equations using standard
numerical techniques [6] such as the Runge-Kutta method.

In order to check the accuracy of our technique, we compared the lines of curvature as well as the
location of umbilics on a B-spline surface and its tessellated counterpart. As depicted in Figure 6, the
computational results for the B-spline surface (a) and its mesh counterpart (b), are very similar. In
the figure, the red lines correspond to the lines of curvature of the maximum principal curvature, while
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the blue lines correspond to those of the minimum principal curvature. The locations of umbilics are
depicted by the small black circles. The precise locations of the umbilic points on this specific B-spline
surface are given in [19], while those on the mesh counterpart are obtained by the contouring method.
Table 1 tabulates the location of umbilics and the computational time for lines of curvature in Figure
6. Note that the surface used in Figure 6 is anti-symmetric with respect to u = 0.5, and hence, it is
not evenly symmetric with regard to the mid-plane.

(a) (b)

Fig. 8 Computation of the lines of curvature: (a) Torus (36K triangles). (b) Close-up view. Lines of curvature
do not match at the start and end points due to the accumulated errors of the Runge-Kutta integration and
the approximation error of the B-spline surface owing to the graph triangular Bézier patches.

(a) (b)

Fig. 9 Computation of the lines of curvature: (a) Ring cyclide (10K triangles). (b) Close-up view. Lines
of curvature do not match at the start and end points due to the accumulated errors of the Runge-Kutta
integration and the approximation error of the B-spline surface owing to the graph triangular Bézier patches.

We conducted a sensitivity analysis of the method against the mesh quality, as shown in Figure
7. The top row of Figure 7 shows a variety of input meshes. The first two meshes have 9K triangles
of low and high quality, whereas the next two meshes have less triangles (1.7K), also of low and high
quality. Here, a high-quality mesh is one that it has been modified by remeshing software. The images
in the bottom row are the computational results of the lines of curvature and detection of umbilics,
corresponding to the meshes in the top row. It is observed that the density of the mesh does not affect
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the result as long as high-quality meshes are used for the computation. On the other hand, low-quality
meshes cannot generate good results, regardless of the mesh density.

In some engineering applications, the computation of the lines of curvature of the entire object is
required. In such cases, one needs to switch from one coordinate system to the other during the com-
putation so that the entire object is covered by all the local graph coordinate systems. When switching
from one coordinate system to the other, the two coordinate systems must share an overlapping re-
gion. Accordingly, the integration of the initial value problem based on one coordinate system can
be terminated in the common region, and can be restarted from the terminated point using the new
coordinate system. Such cases are illustrated in Figure 8(a) and Figure 9(a), which depict a torus and
a ring cyclide, respectively, both of which are analytical surfaces. For each of these two models, the
coordinate transformation is conducted 120 times. Due to the accumulated errors of the Runge-Kutta
integration and the approximation error of the B-spline surface owing to the graph triangular Bézier
patches, the lines of curvature do not match at the start and end points, as can be seen in Figure 8(b)
and Figure 9(b).

Finally, the lines of curvature on a fuselage are illustrated in Figure 10. The fuselage has two lines
of non-generic spherical umbilics near the cockpit, as shown in Figure 10(b). Hence, the computation
of the lines of curvature is terminated near the umbilics.

(b)

Fig. 10 Computation of lines of curvature: (a) Fuselage of an airplane (167K triangles). (b) Close-up view.
Some of the lines of curvature near the cockpit are terminated because of the presence of the lines of non-generic
umbilics.

6 Geodesic

The computation of shortest paths on free-form surfaces is an important problem in ship design,
robot-motion planning, the computation of medial axis transforms of trimmed surface patches, terrain
navigation, and NC machining [26,15,24]. This section provides the governing equations and solution
methods for computing the shortest path between two points on a free-form parametric, as well as the
computation of geodesic offsets.
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6.1 Geodesic equation

Let C be an arc length parametrized regular curve on the parametric surface r(u,v) which passes
through point P; let it be denoted by

r(s) =r(u(s),v(s)) . (65)

Let ¢ be a unit tangent vector of C' at P, n be a unit normal vector of C at P, N be a unit surface
normal vector of S at P, and u be a unit vector perpendicular to ¢ in the tangent plane of the surface,
defined by u = Nx ¢ The u component of the curvature vector k of r(s) is the geodesic curvature
vector kg, and is given by

kg =(k-uu. (66)
The scalar function
kg =k-u, (67)

is called the geodesic curvature of C' at P. According to the definition [26,15,24], any geodesic on a
surface must satisfy xy = 0, which leads to the following differential equations:

d’u du du dv dv\?

-+ (= ory——+T5(—) =0, 68

sz 11<d5> tehe g T 22(d8> ’ (68)

d?v du\? du dv dv?

R o A U ——+TH( -] =0 69

a2 Tin <ds) teliagegs T2 gs ’ (69)
where F;k (4,4, k = 1,2) are the Christoffel symbols, which are defined as follows [26]:

. GE,—2FF,+FE, 9EF, — EE, + FE,

= ) I =
1 20EG - F?) 1 2(EG — F?) ’
GE, — FG EG, - FE
Fl _ v u FQ _ u v 70
127 9(EG - F2)’ 127 9(EG - F2)’ (70)
ri _ 2GF, -GG, — FG, r2 _ BGy—2FF, + FG,
2 2(EG — F2) 2 2(EG — F?)

These two second order differential equations can be rewritten as a system of four first order differential
equations [13]:

. (71)
© (72)
% = —I'1,p* — 2I'opq — Ihq” (73)
= It = 2Tk~ The' (74)

6.2 Two point boundary value problem

The system of four first order ordinary differential equations (71) to (74) can be solved as an initial
value problem (IVP), in which all four boundary conditions are given at one point, or as a boundary
value problem (BVP), in which four boundary conditions are specified at two distinct points. Most of
the problems that arise in the application of geodesics are not IVPs but rather, are BVPs, which are
much more difficult to solve. It is well known that the solution of an IVP is unique, while for a BVP,
it is possible for the differential equations to have many solutions, or even no solution [11,19,24].
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(b)

Fig. 11 Geodesic paths on a wave-like surface between the points of two corners (on the same surface used in
Figure 5). (a) Bicubic B-spline surface. (b) Triangulated mesh of the B-spline surface. (53K triangles)

Table 2 Numerical results for the computation of the geodesic path between corner points of a wave-like
surface. The number of mesh points used in the relaxation method is 500.

B-spline Mesh
Distance | Time (s) | Distance | Time (s)
Left 1.661 0.55 1.661 7.82
Middle 1.865 0.03 1.867 0.52
Right 1.661 0.58 1.662 4.25

There are two commonly used approaches to the numerical solution of BVPs, namely the relaxation
method and the shooting method. The relaxation method begins with an initial guess and improves the
solution iteratively. The relaxation method [25,15] begins by first discretizing the governing equations
by means of the finite differences on a mesh with m points. The computation begins with an initial
guess and improves the solution iteratively, or in other words, “relaxes” to the true solution. The
computation of geodesic paths on a wave-like surface between the points of two corners is illustrated in
Figure 11. It is easy to see that the computational results are almost identical for a B-spline surface (a)
and for its tessellated surface (b). The initial guess is obtained based on the circular arc approximation
[15,24]. There are three geodesic paths that satisfy the geodesic equations (71) to (74). The middle
geodesic path is not a minimal path, while the other two paths are the shortest path due to symmetry.
The computational results, such as the geodesic distances and the computational time, are listed in
Table 2.

The governing idea of the shooting method is that if all values of y(s) are known at s = A, then
the problem can be reduced to an IVP. However, y(A) can be found only by solving the problem.
Therefore, we assume values at s = A, which are not given as boundary conditions at s = A, and then
compute the solution of the resulting IVP to s = B. We assume a value for p4 and solve the differential
equation as an IVP. Using (61), g4 can be obtained as follows:

—Fpa £/F?p} — G(Ep; — 1)
qa = )
G
We also assume the entire arc length of the geodesic paths in order to terminate the integration. The
computed values of y(B) will not, in general, agree with the corresponding boundary condition at

(75)
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s = B. Consequently, we need to adjust the initial values for p4 and s and try again. This process
is repeated until the computed values at the final point agree with the boundary conditions, using
Newton’s method. However, it is well known that unlike the relaxation method, the shooting method
is often quite sensitive to the unknown initial values at point A [24].

When s = A and s = B are located in different coordinate systems, it may be difficult to apply
the relaxation method, since it is based on the finite difference method. The shooting method, on the
other hand, which is based on IVP, can be easily applied to these situations, which are similar to the
computation of the lines of curvature. Such a case is depicted in Figure 12.

(b)

Fig. 12 Computation of geodesics on the Stanford bunny model (18K triangles): (a) Two different coordinate
systems (a1, N1 xai, N1) and (a2, N2 x az, N2).(b) Computation of geodesic path using the shooting method,
in which two different coordinate systems are used.

We have compared the computation of the geodesic path using our algorithm with that of the
ICH2, which is the improved Chen and Han’s algorithm, developed by Xin and Wang [31], for the
wave-like surface. Figure 13 and Table 3 indicate that ICH2 is very fast; however, it can find only one
shortest path, even if there is another shortest path that arises from the symmetry of the surface. On
the other hand, our method finds three geodesic paths that satisfy the geometric equations (for 9K
and 5K mesh), two of which provide the shortest path. However, for very coarse mesh (0.5K), it can
only find the right side geodesic path. Furthermore, Table 3 shows that as the mesh becomes coarser,
the length of the path computed by ICH2 becomes shorter than the actual length; in contrast, our
method computes the length of the path very accurately.

Table 3 Comparison between ICH2 and our method for wave-like surface. The computational time of our
method includes only the right side geodesic path.

9K Triangles 5K Triangles 0.5K Triangles
Distance | Time (s) | Distance | Time (s) | Distance | Time (s)
ICH2 1.650 0.156 1.627 0.047 1.592 0.002
Our method 1.661 1.016 1.662 0.468 1.671 0.579
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(a) (b) (c)

Fig. 13 Numerical results for computation of geodesic path between corner points of wave-like surface. Top
row: Results of ICH2. Bottom row: Results of our method. (a) High-quality 9K mesh. (b) High-quality 5K
mesh. (¢) High-quality 0.5K mesh.

6.3 Geodesic offsets

In this section we focus on geodesic offsets, which are different from the classical definition of offset.
Geodesic offsets, also known as geodesic parallels, are well known in classical differential geometry.
Traditionally, the spacing between adjacent tool paths, which is referred to as the side-step or pick-
feed, is kept constant in either the Euclidean space or in the parameter space. Geodesic offset curves
have been used to generate tool paths on a part for zig-zag finishing that uses 3-axis NC machining
with a ball-end cutter, so that the scallop-height, which is the cusp height of the material removed
by the cutter becomes constant [16,24]. This leads to a significant reduction in the size of the cutter
location data, and hence, in the machining time.

Let us consider an arbitrary curve C on a surface. The locus of points at a constant distance
measured from curve C' along the geodesic curve drawn orthogonal to C is called the geodesic offset
(see Figure 14). Patrikalakis and Bardis [23] provided an algorithm to construct such geodesic offsets
on NURBS surfaces. The equations of the geodesics consist of four first order nonlinear ordinary
differential equations (71) to (74) that are solved as an initial value problem.

Let us consider a progenitor curve lying on a parametric surface r = r(u,v) given by r¢(¢t) =
r(u(t),ve(t)) and an arc length parametrized geodesic curve rf(s) = r(u9(s),v(s)) orthogonal to r°.
We select n points on the progenitor curve ¢;, 0 < i < n—1, and compute a geodesic path for each point
by a distance equal to dg as an IVP. The initial direction t9 = (4, 4%) = (p, q) can be determined
by the condition that the tangent vector along the progenitor curve ¢ and the unit tangent vector of
the geodesic curve t9 are orthogonal

(WCE+v°F)p + (u°F +9°G)g =0, (76)
and by the normalization condition,
E(p)* +2Fpg+G(g)* =1, (77)
which leads to
P = (78)

-+ 7
VEw? — 2Fwiwy + Gw?
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w1

=F , 79
\/Ewg — 2Fwjws + Gw? (79)

q

where w; = 4°F + v°F and we = 4°F + v°G [23,24]. The positive and negative signs in (78) and
(79) correspond to the two possible directions of the geodesic path relative to the progenitor curve.
The terminal points of the geodesic paths, which depart orthogonally from n selected points of the
progenitor curve on the surface, are interpolated in the surface patch parameter space by a B-spline
curve, thus ensuring that the offset curve lies entirely on the surface.

The geodesic offsets on the tessellated surface used in Figure 6(b) are shown in Figure 14. The
blue line represents the progenitor curve, whose pre-image is a parabola on which each geodesic offset
distance is 0.667.

@ (b)

Fig. 14 Geodesic offsets on the tessellated surface used in Figure 6(b). The blue line represents the progenitor
curve whose pre-image is a parabola. The cool colors indicate a small offset distance.

7 Conclusions

We have introduced a novel unifying technique that enables us to use the shape interrogation tools
developed for B-spline surfaces for objects represented by triangular meshes. Without any change in the
original algorithm, the newly proposed method allows us to compute various surface interrogation tools
on a triangular mesh model as though the surface were a B-spline surface. Such tools include circular
reflection lines, the computation of lines of curvature, geodesics, geodesic offsets, and the detection
of the umbilics. We assume that the input mesh has been modified by remeshing software, which is
readily available on the Internet, so that it becomes a high-quality mesh. It is observed that the density
of the mesh does not affect the result as long as high-quality meshes are used for the computation.
On the other hand, low-quality meshes cannot generate good results, regardless of the mesh density.
Many illustrative examples have been given that show the effectiveness of the unifying techniques. We
acknowledge that the computational cost of the current implementation is relatively high.

Acknowledgements A portion of this work is supported by Komatsu Ltd. The bunny model is courtesy of
the Stanford University Computer Graphics Laboratory.
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